Những câu hỏi liên quan
Agami Raito
Xem chi tiết
Kiều Trang
Xem chi tiết
Hoắc Thiên Kình
23 tháng 6 2019 lúc 19:14

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

Bình luận (0)
Tuan Mai Thi
Xem chi tiết
Phạm Ngọc Thạch
9 tháng 6 2017 lúc 20:55

\(A=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\ge\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}\ge2\sqrt{\frac{\sqrt{2x}}{\sqrt{y}}.\frac{\sqrt{2y}}{\sqrt{x}}}=2\sqrt{2}\) (Cô si 2 lần)

Vậy min A = \(2\sqrt{2}\). Dấu bằng "=" ra khi và chỉ khi x=y= -1 hoặc x=y=1
 

Bình luận (0)
hoàng thị huyền trang
Xem chi tiết
Hieu vu the
Xem chi tiết
Sắc màu
25 tháng 4 2018 lúc 14:56

Nhận xét :

x2 lớn hơn 0 ( với mọi x dương )

y2 lớn hơn 0 ( với mọi y dương )

Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2  và y max 

Nhưng x + y = 2 

=> x = y = 1 

A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\) 

Vậy A min = 5 <=>  x = y = 1

Bình luận (0)
Nguyen Viet Bac
25 tháng 4 2018 lúc 15:14

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2

AM-GM => x + y >= \(2\sqrt{xy}\)

=> \(2\sqrt{xy}\)<= 2

=> xy <= 1

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)

=> A >= 1/xy + 3/xy

=> A >= 4/xy

mà xy <= 1

=> A >= 4/1

=> A>= 4 

dấu bằng sảy ra khi x = y = 2/2 = 1

Vậy GTNN của A là 4 khi x = y = 1

Bình luận (0)
Nguyen Viet Bac
25 tháng 4 2018 lúc 15:15

Nhầm 1/x^2 + 1/y^2 >= 2/xy

=> A >= 5

khi x = y = 1 nhé

Bình luận (0)
Thầy Cao Đô
Xem chi tiết
Tuấn Giang
9 tháng 5 2021 lúc 17:01

-5

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Mai Hằng
31 tháng 5 2021 lúc 15:52

undefined

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Duy Thái
Xem chi tiết
Xem chi tiết
Lê Tài Bảo Châu
7 tháng 1 2020 lúc 23:11

Áp dụng bđt AM-GM ta được:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)

Cộng từng vế các bất đẳng thức trên ta được

\(A+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 19:27

Cách 2:Dù dài hơn Lê Tài Bảo Châu

\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)

\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)

Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )

Cách 3:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
shitbo
7 tháng 5 2020 lúc 22:18

Áp dụng Cauchy Schwarz 

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Đẳng thức xảy ra tại x=y=z=2/3

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Thiên An
22 tháng 6 2017 lúc 16:51

Với x, y thực dương áp dụng BĐT Cauchy ta có:

\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)

\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)

\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)

Vậy Pmin = 10 tại x = y.

Bình luận (0)
duc tuan nguyen
21 tháng 6 2017 lúc 20:11

áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)

x2+y2\(\supseteq\)2xy

nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10

dấu = xảy ra\(\Leftrightarrow\)x=y

Bình luận (0)
Rau
21 tháng 6 2017 lúc 22:06

Bạn #ductuannguyen SAI. 

Bình luận (0)